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1. Definition of energy demand: 
 
Reducing energy demand is considered to be one of the key tools to reduce GHG (greenhouse gas) 
emissions in the short to medium time period (Sorrel 2015). Despite this fact, the recent trends of 
the different aspects of energy demand show that the demand-side of the energy system has been 
neglected in terms of actions to reduce global warming (Creutzig et al. 2018). However, before 
discussing further the trends of energy demand, both the terms ‘energy’ and ‘energy demand’ 
should be defined precisely.  Energy is generally defined as ‘ability to do work’ and it is a 
fundamental input to our modern life (Shove, and Walker, 2014). Energy more precisely energy 
demand is essential for an individual as well as for a society to function and grow where demand 
for energy refers to the consumption of energy by any kind of human activity (CREDS 2019, 10th 
October). Although the meaning of energy demand can vary as per the user perspective, but in 
general, energy demand refers to “any kind of energy use to satisfy individual energy needs for 
cooking, heating, travelling, etc., in which case, energy products are used as fuel and therefore 
generate demand for energy purposes” (Bhattacharyya 2011). In other words, energy demand 
denotes all the uses of energy such as transport fuels, and fuels for heating and cooling, electricity. 
However, it is noteworthy that energy demand is a derived demand- meaning, energy is not for 
direct consumption rather it is consumed for ulterior purposes such as for producing goods and 
services, for mobility, or for deriving comforts from a service (Bhattacharyya and Timilsina 2009). 
Thus, derived energy demand can reflect both; the amount of energy required in a country which is 
termed as primary energy demand, and the amount supplied to the consumers which are termed 
as final energy demand (Bhattacharyya 2011). In the energy community, energy demand is used to 
refer to the derived demand for energy. Thus, in this report also, we use the word energy demand 
to explain derive demand for energy.  
After the energy crisis in 1970, energy is acknowledged as a ‘social need’ and meeting energy 
demand is considered as a social problem (Van Benthem, and Romani, 2009; Shove, and Walker, 
2014). Researchers from different backgrounds such as economics, engineering, sociology, 
anthropology, philosophy take interest in analyzing the ‘need’ for energy and its possible 
consequences to the environment. Thus, both socio-economic analysis and techno-economic 
analysis are done based on various mathematical tools which provide evidence to understand the 
opportunities and limitations of the energy system. These energy models are often based on the 
status quo energy demand pattern and supply situations (Pokharel et al. 2012). Thus, the results of 
these models provide evidence for the policymaker which can then further be used to minimize 
global warming and optimize human welfare. However, the mathematical energy models are often 
criticized based on the fact that they do not incorporate various social and economic factors that 
influence both the demand and supply of energy. As a result, many of the energy models are accused 
of not being able to project energy demand and supply beyond a narrow planning period (Pokharel 
et al. 2012). Moreover, most of the existing energy models are considered as black boxes as 
assumptions and calculation of these models are hard to follow (Openmod 2019, 5th December). 
Therefore, the objective of this report is to analyze the trends of energy demand and further 
explains how this trend clarifies the theoretical literature on energy efficiency. Moreover, this study 
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discusses the sector-specific transition trends by analyzing the results provided by different energy 
demand models. This report further contributes to the knowledge pool by doing a focused literature 
review of the energy demand models and discussing some key issues concerning the demand 
models. Project SENTINEL reviews two sectors, the building sector, and the transport sector. Thus, 
the scope of this literature review limits to these two sectors only. However, it is important to note 
that the energy demand by the industrial and agricultural sectors are as prominent as building and 
transport sector, but due to time and resource constraints, this project as well as this report, does 
not cover these two sectors. This report is the first step towards developing the SENTINEL energy 
transition modelling framework. 
This report is organized in four key sections. The first section introduces the concept and definition 
of energy and energy demand. Section one further discusses the key trends of energy demand. 
Section two reviews the different methodologies used in the energy demand models to project 
future energy demand. Then in section three different energy models used in the building and 
transport sector are reviewed and also, the issues with the energy models in these two sectors are 
discussed. Lastly, section four talks about key challenges of modelling energy demand and the next 
step forward in this project. 
 

1.1 Key trends of energy demand: 
 
As per the IEA (2019) report, energy demand globally has increased rapidly over last decade and this 
increase in demand does not only include demand for conventional energy sources such as natural 
gas and oil, but demand for renewable sources (for example solar and wind energy) are included as 
well with a double-digit growth. This high energy demand results in high energy consumption which 
is almost the double of the average growth rate since 2010 (IEA 2019). As a result of high energy 
consumption, energy-related CO2 emissions have increased by 1.7% (IEA 2018). Thus, it can be 
inferred that renewable energy demand although it increases, still could not able to substitute the 
non-renewable energy sources. Therefore, the importance of the policies on both energy efficiency 
and renewable energy use are required around the world to curb down energy-related GHG 
emission. For instance, the new regularity framework of the European Union sets an energy 
efficiency target of 32.5% and a renewable energy target of 32% for the EU for 2030 (European 
Commission 2018). However whether these targets would be adequate to restrict the global 
temperature rise by 1.5 degree, would require forecasting of energy demand by incorporating all 
the important factors that includes energy price, population growth, urbanization rate, diffusion 
rate, and many more (Psiloglou et al. 2009; Madlener and Sunak 2011). Forecast of energy demand 
is important for energy planning and to assess the future energy demand, energy demand models 
are used (Worrell et al. 2004; Bhattacharyya and Timilsina 2009). The policymakers often rely on the 
results of energy models to decide on which policy to implement. Craig et al. (2004) study argued 
that a forecast is considered to be successful if  

i. The results or modelling parameters influence the policymakers 

ii. The outcome of the forecast has a significant impact on the public opinion and on the 

opinion of the energy community 
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iii. The forecast modelling represents the underlying physical and economic principles of the 

sector/world or it highlights the key economic or social patterns though the energy model.  

However, it is noteworthy that projected demand for energy often deviates from the actual demand 
due to the limitations of estimation models and their assumptions (Bhattacharyya and Timilsina 
2009). There could be several other reasons behind this deviation from the actual energy demand. 
Perhaps the most interesting reason why a modelling result may vary is that anticipating issues can 
prompt into maintaining a strategic distance from the issues. In this case, the failure of projection 
would demonstrate the accomplishment of the model (Craig et al. 2002).  
 
Energy efficiency and energy demand: As discussed in the above section, in 2018, the global energy 
demand- more precisely global primary energy demand grew by 2.3%. As per IEA (2019) report, this 
increase in global demand is mostly contributed by the growth of fossil fuels (70%) which outweigh 
the 24% increase from renewables in primary demand. Figure 1 below shows the pattern of the 
global primary energy demand of the previous eight years: 
 

 
Figure 1: Trend of global primary energy demand 

Source: IEA (2019) 
 
Figure 1 clearly shows that the global total primary energy demand increase is the largest since 
2010. Moreover, the increase in primary energy demand and the high proportion of fossil fuels in 
the energy mix have led to an increase in GHG emissions which ‘reached a historic high of over 33 
billion tonnes of carbon dioxide’ (IEA 2019). If we analyze further the rate of increase in primary 
energy demand, it would be clear that this increase in primary energy demand is mostly led by 
growth in fossil fuel production.  More precisely, 70% of the primary demand is accounted by fossil 
fuels growth.  Within the total growth of 70%, natural gas accounts for 46%, oil 15%, and coal 9% 
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which together outweigh the growth from renewables (24%) in primary demand (IEA 2019). 
Therefore, the role of efficiency improvement which would reduce the energy demand has become 
crucial. Reducing energy demand through improved energy efficiency where energy efficiency is 
defined as “using less energy to produce the same amount of services or useful output” (Patterson 
1996), is the cheapest, and fastest means to mitigate climate change (Sorrell 2015). Thus, by 
definition, improvement in energy efficiency would reduce the demand for energy for a particular 
service. However, in practice, the improvement in energy efficiency may not always result in less 
demand for energy or the demand reduction may occur due to some other reasons which have 
nothing to do with efficiency improvement. Hence, it is always recommended to specify the 
reference against which those energy savings or demand-reductions are measured or estimated by 
specifying the appropriate spatial and temporal boundary, assumptions and measuring unit (Sorrell 
2015).  
Generally, in energy policy analysis, the improvement in energy efficiency is measured by energy 
intensity where energy intensity is defined as “the ratio of energy consumption to GDP” (Filippini, 
and Hunt 2011). More precisely, energy intensity reflects the amount of energy used for per unit of 
activity. Hence, to understand the impacts of different energy efficiency measures in different 
sectors such as building, transport, industry, it is recommended to examine the final energy demand 
instead of primary energy demand. As per the Energy Outlook Report (2019), the global final energy 
demand has also increased by 2.2% in 2018 which is similar to global primary energy demand. Figure 
2 below shows the trend of global final energy demand by different fuel sources: 
 

 
Figure 2: Change in global final energy demand by different fuel-types 

Source: IEA, energy outlook report 2019 
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Figure 2 decomposes the percentage change of different fuel types over the past eight years. From 
this figure, it is clear that the demand for coal has been consistently declining from 2013 and the 
rate of declining demand for coal ranges from 0-4% over the past eight years. Although there is a 
declining trend for coal, the final energy demand shows an upward trend. One of the key reasons 
behind increasing final demand is growth in natural gas (5.7%) and electricity (4.1%). In other words, 
the demand for coal has shifted to gas and electricity mostly demanded for heating, cooling, and 
use of appliances. Moreover, oil accounts for around 41% of the final global demand which is the 
largest share of the final demand. However, the rate of increase in oil demand has slowed in 2018 
compared to 2015 due to the high price of oil. Thus, the transport sector also looking for alternatives 
to oil and has switched some part of the demand for natural gas and other active modes of travel.  
The demand for renewable energy although increases but still electricity generation from different 
renewable sources such as wind, and solar photovoltaics (PV) supply varies as per the location and 
time. Thus, these renewable energy sources are called variable renewable energy sources (VRES) 
(Ringkjøb et al. 2018). Both the solar and wind are difficult to predict and hence, unable to provide 
the required grid support services which include ‘frequency and voltage regulation, fault ride 
through, spinning reserve and system restoration’ to keep up a steady and reliable grid which are 
fundamental to the energy systems (Boßmann and Staffell 2015; Ringkjøb et al. 2018). The cost of 
renewable energy has decreased significantly and now they are inexpensive compare to 
conventional fossil-fuel based energy generation (Staffell, and Pfenninger 2018). Due to the ongoing 
technological improvement in renewable energy-based electricity generation, both wind and solar 
capacity globally have increased to 790 GW in 2016 from 80 GW in 2006 (Staffell, and Pfenninger 
2018). This also implies that the power systems are becoming more and more dependent on the 
weather conditions. Therefore, to better understand this impact and strength of VRES run electricity 
generation, the energy models can play a crucial role.  
Here, it is important to discuss that there exists a distinction between energy demand and energy 
consumption.  Energy demand shows the relationship between price/wealth, income, and quantity 
demanded of energy for the energy carrier or quantity demanded of energy for the final energy use 
(Bhattacharyya 2011). Hence, energy demand exists before the purchasing choice is made that 
means it is an ex- ante concept. Whereas energy consumption takes place once the purchase 
decision is made- in other words, once energy demanded and purchased then only consumption of 
energy starts (Bhattacharyya 2011). Thus, energy consumption is an ex-post concept. However, in 
energy policy analysis, energy consumption and energy demand are often used interchangeably. 

 

2. Overview of modelling methods: 
 
The energy demand models can be categorized in many ways, while there is rarely any model that 
can fit into one distinct category. Grubb et al (1993) study categorize energy models with the help 
of six dimensions which are applicable for energy demand models as well. The six dimensions are- 
1) top-down and bottom-up approaches, 2) time horizon, 3) sectoral coverages, 4) optimization and 
simulation techniques, 5) scale of aggregation and 6) geographical coverages. These classifications 
of energy models are not an exhaustive list as there could be other dimensions/categories, for 
instance, hybrid models, and backcasting models. However, the energy demand models mostly 
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follow two approaches which are top-down and bottom-up approaches. These two model 
categories mainly differ due to the technological details of the energy and also due to the 
comprehensiveness of endogenous market adjustments (Böhringer and Rutherford 2008). 
Moreover, both top-down and bottom-up models can be further subdivided into two more 
categories. For instance, the models using a top-down approach can be further categorized into 
econometric and technological models whereas the models using the bottom-up approach can be 
categorized further into statistical and engineering models (Swan and Ugursal, 2009). These 
categorizations of models are done to understand the differences and similarities of different energy 
models. This categorization or classification of models can facilitate the selection of the proper 
energy models (Van Beeck 2000). However, the use of the model is determined by three key drivers 
namely 1) purpose of the research, 2) external or input assumptions, and 3) structure of the model 
(Van Beeck 2000). Thus, different energy models are used for different end-use sectors. Usually, 
energy demand is divided by energy consumptions of different sectors and the sectors often 
coincide with the economic sectors such as Industrial, residential, tertiary and transport sectors, of 
a country (Paez et al. 2017). In addition to these sectors, other consumption sectors for example, 
mining or agricultural sector also consume energy (BP, 2016; Paez et al. 2017).  
Behind every energy model, there are three methodologies used to project energy demand. These 
three methodologies are 1) simulation methodology, 2) optimisation methodology, and 3) 
equilibrium methodology (Ringkjøb et al. 2018). Each of these methods is described in the section 
below:  
 

2.1. Simulation methodology: Simulation models simulate a component of energy-system (such 
as energy demand) or the whole energy system based on certain specified equations and 
characteristics (Ringkjøb et al. 2018). Simulation methodology generally uses a bottom-up 
approach, since the simulation of a component of the energy system or stimulation of a whole 
energy system requires a detailed technological description of the system. Thus, every simulation 
methodology contains an equation or a set of equations that represent the behavior of the 
component of energy system or the whole system. Moreover, simulation models can also test 
various system topologies and their impacts from various scenarios (Ringkjøb et al. 2018). For 
example, agent-based modelling in the transport sector often uses simulation methods to analyses 
the energy demand of the transport sector.  
 

2.2 Optimisation methodology: Optimization models are used to optimize a specific component 
of the energy system among a set of alternatives by minimizing or maximizing the component 
considering the given inputs and also by meeting the given constraints. Generally, energy 
investment decisions are suggested/taken by using optimization models. Optimization models 
mostly use three techniques namely; 1) linear Programming (LP), 2) non-linear Programming (NLP), 
and 3) mixed Integer Linear Programming (MILP) techniques (Neshat et al. 2014). The type of 
technique is determined based on the research question the model is exploring and by the data 
availability.  For instance, to explore the amount of investment in renewable energy to meet the 
energy demand, one needs to use the MILP technique. However, as Ringkjøb et al. (2018) study 
argued that “the majority of optimization models use a linear programming (LP) approach, with an 
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objective function which is either maximized or minimized (e.g. minimizing the total system cost), 
subject to a set of constraints (e.g. balancing the supply and demand in the grid)”.  
 

2.3 Equilibrium methodology: Equilibrium models use an economic approach where energy 
demand is modelled as a part of the whole economy and further it analyses the impact of energy 
demand on the rest of the economy. Popular models such as General equilibrium models, or 
computable general equilibrium models (CGE), use equilibrium methodology. These models 
consider the economy as a whole and then determine important economic parameters such as the 
gross domestic product (GDP) endogenously as a change of energy demand (Ringkjøb et al. 2018).  
 
Figure 3 below presents different methods used by the energy models.  
 



         
This project has received funding 
from the European Union’s Horizon 
2020 research and innovation 
programme under grant agreement 
No 837089.  

 
 
 

 11 

 
Figure 3: Flowchart of methods used in energy models 

Source: Own elaboration 
 
Different methodologies are used in different categories of models. Also, the methodology of 
energy models depends on the type of research question the model wants to answer. For instance, 
any to answer investment or cost-related problems in the energy sector would be answered by using 
simulation methodology. In case, a researcher wants to see the overall impact of various energy 
policies on the economy, then equilibrium models would be used- for example, Computable General 
Equilibrium (CGE) models use equilibrium methodology in order to evaluate a whole impact on the 
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economy. More examples of different models using different methodologies are discussed in table 
1 and table 2.  
 

3. Types of energy models:  
Different categories of models and different methodologies used by these models often vary both 
across and within the end-use sector. The usage of the model is determined by the research 
question and also by the availability of input data. In the section below, some of the sector-specific 
energy demand models are discussed to explore the diversity of different energy demand models. 
The objective of this section is not to review every single energy demand model for the building and 
transport sector, but rather the objective of this review is to provide an understanding of some of 
the key energy demand models of these two sectors. Also, a review of all the existing energy 
demand models is difficult as models are continuously being developed and updated. Further, this 
study does not review any system models (such as MARKET, TIMES, MESSAGE, PRIME, etc.) as they 
will be discussed in the SENTINEL WP 4 report. However, some of the specific branches of system 
models are included in the review to provide a clear picture of energy demand.  
To gather information about sector-specific demand models, we have done a thorough literature 
review and also at the same time, we have circulated a ‘call for evidence’ among the energy 
community to collect information about both published and unpublished (grey literature) models. 
Considering both the time and resource constraint, circulating a ‘call for evidence’ along with a 
rigorous literature review seem to be the best option.  
 

3.1 Building sector:  
Globally building sector consumes one-third of all end-use energy (Isaac and Van Vuuren 2009). In 
other words, as cited in Urge-Vortsatz et al. (2015), the building sector- more precisely residential 
and commercial building sector contributed 24% and 6% respectively of global final energy demand 
(32% in total by the building sector) in the year 2010 which accounts 30% of energy-related CO2 
emissions globally. Literature (such as- Abergel et al. 2017; Urge-Vortsatz et al. 2015; Levine et al. 
2007) documents that energy consumption of the building sector has been growing and without any 
policy intervention, it is expected to grow rapidly over coming years. The key reasons behind the 
growth of energy consumption include population growth, economic growth as it would also imply 
improved access to electricity, higher usage of space cooling, and higher use of electrical appliances 
(Lucon et al., 2014; Rogelj et al. 2018). If this trend continues, then energy consumption is likely to 
increase by 50% in 2050 compared to 2010 energy consumption level (Rogelj et al. 2018). However, 
if sector-specific efficiency measures are taken then a declining trend in 2050 compared to the 2010 
level can be achieved (Rogelj et al 2018). The are several ways to achieve this declining trend such 
as 1) controlling energy demand, and 2) electrification of the building sector (Rogelj et al 2018; 
Knobloch et al. 2019).  In order to reduce the energy demand of the building sector, different energy 
efficiency measures designed for the building sector have a vital role to play. For instance, 56% of 
the final energy is used for heating which includes both water and space heating, in the residential 
building sector. Among this 56% of energy demand for heating, 55% of energy is generated from 
fossil fuels (Knobloch et al. 2019). Therefore, it can be concluded that heating and cooling demand 
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has the highest energy saving and GHG emission reduction potential which can be utilized by 
implementing different energy efficiency measures along with renewable equipment to achieve 1.5-
degree temperature (Lucon et al. 2014; Rogelj et al. 2018; Knobloch et al. 2019). Although these 
studies clearly show that space heating and cooling dominates the energy demand but, however, a 
recent data projection indicates a shift towards space cooling and appliance usage-related demand. 
In other words, a recent projection done by Levesque et al. (2018) study indicate that space cooling, 
and appliances would dominate building energy demand in the future. 
 
Further, energy intensity in the building sector continues to improve by 1.5% per annum where 
energy intensity represents energy use in the building sector per m2 (Abergel et al. 2017). 
Simultaneously with the improvement in energy intensity, the global floor area also continues to 
grow with about 2.3% rate annually (Abergel et al. 2017). Thus, the growth floor area outweighs the 
effects of improvement of energy intensity and as a result, emission from the building sector globally 
and construction (of the buildings) sector continues to grow. In figure 4 below the global building 
sector’s energy consumption by type is presented to elaborate this above point further: 
 

 
Figure 4: Global buildings sector energy consumption by fuel type, 2010 – 2016 

Source: (Abergel et al. 2017) 

 
Figure 4 decomposes the different types of energy used by the building sector.  From this figure, it 
can be clearly seen that the most used form of energy is electricity followed by natural gas and 
biomass. Energy demand and its consumption vary depending on the sectors which include the 
residential building sector and commercial building sector. Globally, the major share of the energy 
is demanded for thermal uses- for instance, over 60% and almost 50% energy are demanded for 
thermal uses by the residential and commercial building sector respectively (Ürge-Vorsatz et al. 
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2015). However, to keep the global warming by 2-degree target, 32 Gt of CO2 emissions reduction 
is required between 2010 and 2050 from the building sector globally, and in order to keep the 
warming below 1.5 degrees, further 28 Gt of decrease would be essential by the global building 
sector (Wang et al. 2018). Thus, the mitigation potential of both residential and commercial building 
is required to be utilized in order to attain the 1.5-degree target. Therefore, new state-of-the-art 
building concepts such as nearly zero energy buildings, passive houses, are required where on-site 
renewable energy systems (such as PV, wind turbines, or solar thermal) are present which can 
generate as much energy as is consumed by the building over one year (Lucon et al. 2014).  One 
example of such implementation of zero energy buildings can be seen in the European Union where 
European Commission Recommendation (EU) 2016/1318 of 29 July 2016 recommends that by 2020, 
all new buildings within the EU should be nearly zero-energy buildings1. The impact and cost 
implication of implementing these kinds of policies need to be understood precisely in order to 
design and implement such visionary policies. Thus, energy demand models that also include cost 
implications could play a vital role to formulate such visionary polices.  
In the section below, some of the building sector specific energy demand models are discussed to 
explore the diversity of different energy demand models. The objective of this section is not to 
review every single energy demand model of the building sector, but rather the objective of this 
review is to provide an understanding of some of the key energy demand models of the building 
sector and modelling trends of this sector. Also, a review of all the existing building-sector energy 
demand models is difficult as new models are ceaselessly being developed almost every other day 
and old models are being updated quite frequently.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1: List of energy demand models for the building sector

 
1 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016H1318 

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016H1318
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Model name Host 
institution 

Time 
span 

Geographi
c coverage 

Modelling 
method/approach 

Description of the model 
(some key assumption, a brief 
description of the model, 
specific end-use analyzed) 

Key drivers License 
(Open/c
lose) 

Key 
relevant 
papers/re
ports 

Wuppertal Wuppertal 
Institute 

2005-
2020 

EU 25 
member 
states  

Wuppertal model 
uses a technology-
oriented bottom-
up approach. 

This model estimates GHG 
emission for building sector 
based on both the final and 
primary energy demand. This 
model uses a scenario analysis 
where different policies and 
measures (which includes 
market penetration of 
renewable energies, CFL 
installation, improvement of 
HVAC system, energy efficient 
appliances) are considered as 
an efficient scenario along with 
a business-as-usual scenario. 
Moreover, in this model the 
measures and policies to 
mitigate GHG has been 
selected based on their cost-
efficiency potential at the 
national level. 

-Economic 
Parameters 
- Time 
period for 
pay back 
- Energy 
demand 
(both final 
energy and 
primary 
Energy) 

Unknow
n 

Lechtenbö
hmer et al. 
2005 
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INVERT/EE-Lab Vienna 
University 
of 
Technology
/EEG 

2030/2
050/20
80 

EU 28 
member 
states 

INVERT/EE-Lab 
model uses a 
dynamic bottom-
up techno-socio-
economic 
simulation 
methodology. 
Moreover, this 
model uses Python 
codes to execute 
the methodology.  

This model assesses the 
impacts of various policy 
bundles aiming at the total 
energy demand, energy carrier 
mix, CO2 reductions along with   
expenses for space heating, 
cooling, hot water and lighting 
demand in buildings. This 
model is specifically equipped 
to evaluate the future energy 
demand for space heating and 
cooling in the EU 28 countries.   

-Building 
stock 
-Space 
heating and 
hot water 
technologie
s  
-Energy 
prices 
-
Component 
based U 
values 

Closed Fleiter, T. 
et al. 
(2016) 
https://inv
ert.at/inde
x.php 

The Built 
Environment 
Analysis Model 
(BEAM2) 

Ecofys 2012-
2050 

Global BEAM2 is a 
calculation model 
that computes a 
set of data, which 
includes 
parameters such as  
energy 
consumption, CO2 
emissions, costs 
due to installation 
of energy 
efficiency 
measures and 
energy supply 

The Built Environment Analysis 
Model (BEAM2) shows the 
impacts of different policy 
scenarios on energy demand, 
and GHG emissions for the 
building sector. More 
precisely, BEAM2 provides a 
comprehensive detail of 
energy demand, GHG 
emission, and cost for space 
heating and cooling, hot water 
and auxiliary energy in 
buildings. This model is a 
calculation model which can 

-Energy 
price 
- Interest 
rate 
- Building 
stock 
- Climate 
zones 
- 
Investment 
costs for 
insulation 
and 
Building 
equipment 

closed Boermans, 
T., 
Bettgenhä
user, K., 
Offerman
n, M., & 
Schimscha
r, S. (2012) 

https://invert.at/index.php
https://invert.at/index.php
https://invert.at/index.php
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systems of 
buildings 

be applied for any building 
stock globally.  

- Energy 
consumpti
on data for 
heating, 
cooling, hot 
water and 
auxiliary 
energy 

Future Technology 
Transformations’ 
(FTT: Heat) model 

Radboud 
University 

2050 59 regions 
in the 
world  
which 
includes 
regions 
from EU 
member 
states  

FTT: Heat model 
uses a non-
equilibrium 
bottom-up 
simulation  

This model aims to predict the 
composition of different 
technologies of the heating 
systems of the residential 
sector in 59 regions globally 
including the EU member 
states. Further, this model 
project technological 
composition under some 
assumptions on heat demand 
and choice behavior. 
Moreover, FTT: Heat model 
projects the fossil fuel used 
and CO2 emission by 
stimulating various sets of 
possible policy strategies. 
FTT:Heat is an integrated 
model (in collaboration with 
the global macro-econometric 
model E3ME). E3ME can 

-
Macroecon
omic 
indicators 
(such as 
household 
income, 
GDP 
,employme
nt) 
-
Investment 
costs, fuel 
cost 
-
Technology 
diffusion 
rate 

Unknow
n 

Knobloch, 
et al 
(2017); 
Knobloch et 
al. (2019) 
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project the multiplier effects 
and macro-economic effects of 
residential heating demand. 

-Lifetime of 
a 
technology 
 

The Behavioral 
change in energy 
consumption of 
Household 
(BENCH) model 

University 
of Twente 

2020/2
030 

Selected 
EU regions 

BENCH is an agent-
based model which 
uses simulation 
technique to 
estimate 
behavioral effects 
on energy demand  

BENCH model stimulates 
behavior which are complex 
and nonlinear, and also that is  
obstinate in equilibrium 
models. By tracking behavior, 
BENCH evaluates the 
aggregated impacts on energy 
demand by heterogeneous 
households. 

-Annual 
income of 
the 
household 
-Electricity 
consumpti
on 
-Energy 
label of a 
dwelling 
-Dwelling 
tenure 
status 
-
Psychologic
al factors 

Unknow
n 

Niamir, 
Leila, et al. 
2018 

The Bottom–Up 
Energy Analysis 
System (BUENAS) 
model 

Lawrence 
Berkeley 
National 
Laboratory 

2005-
2030 

Nine 
regions 
across the 
globe 
including 
EU  

BUENAS model 
uses bottom-up 
approach and 
simulation 
technique to 
project energy 
demand of the 
household.  

The Bottom–Up Energy 
Analysis System (BUENAS) is a 
bottom–up stock accounting 
model which predicts energy 
consumption for each type of 
equipment (appliances, 
lighting, and HVAC) by using an 
engineering-based estimation 

-GDP 
-Building 
stock 
-
Urbanizatio
n 
-Population 

Unknow
n 

McNeil et 
al. 2013 
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method of annual unit energy 
consumption. Energy demand 
for each scenario is derived by 
data on equipment stock, 
usage, efficiency, and 
intensity.  

TIMER-Residential 
Energy Model: 
Global (TIMER-
REMG) 

PBL 
Netherlands 
Envrionment
al 
Assessment 
Agency 

Global, 
26 
regions 

1971-2100 TIMER-REMG is a 
part of an 
integrated 
assessment model 
(IMAGE). It uses 
recursive dynamic 
technique. 
Moreover, this 
model uses M 
modelling a 
numeric modelling 
tool to execute its 
calculations.  

TIMER-REMG model builds on 
building stocks and their 
demand on energy based on 
relationships between energy 
demand and economic growth. 
Different 
fuels/technologies/efficiency 
investments compete for 
market shares of the energy 
demand based on their 
relative costs, including fuel 
and capital costs. Energy 
demand services: space 
heating, space cooling, water 
heating, lighting, cooking, and 
appliances. Each of the above 
services can be met from 8 
energy carriers: coal, oil, 
natural gas, modern biofuels, 
traditional biofuels, secondary 
heat, hydrogen, electricity 
(appliances can only be met 

-
Households 
income 
- Floor 
space 
- Appliance 
ownership 
- Discount 
rates 
-Energy 
prices 
-Regional 
climatic 
characteris
tics 
-Insulation 
investment 
costs 
-Capital 
costs for 
efficient 

Closed Daioglou 
et al. 
(2012) 
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with electricity, secondary 
heat can only provide space 
and water heating). 

heating 
devices 

TIMER-Services PBL 
Netherlands 
Envrionment
al 
Assessment 
Agency 

Global, 
26 
regions 

1971-2100 TIMER-Services is 
part of an 
integrated 
assessment model 
(IMAGE).  
Projections based 
on relationships 
between energy 
demand and 
economic growth. 
Different 
fuels/technologies/
efficiency 
investments 
compete for 
market shares of 
the energy demand 
based on their 
relative costs, 
including fuel and 
capital costs. 
Calculation process 
is recursive 
dynamic. 
Moreover, this 

Energy demand services: 
Space heating and cooling, 
water heating, lighting, 
cooking, and appliances. Each 
of the above services can be 
met from 8 energy carriers: 
coal, oil, natural gas, modern 
biofuels, traditional biofuels, 
secondary heat, hydrogen, 
electricity (appliances can only 
be met with electricity, 
secondary heat can only 
provide space and water 
heating). Space heating and 
cooling depend on regional 
climate conditions. 
Investments in insulation (6 
insulation levels) reduce 
heating/cooling demand. 
 

- Value 
added from 
services 
 -Energy 
prices 
-Regional 
climatic 
characteris
tics 
-Insulation 
investment 
costs 
-Capital 
costs for 
efficient 
heating 
devices 

closed Fleischma
n 
Napadens
chi, J. 
(2015) 



         
This project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under grant agreement No 837089.  

 
 
 

 21 

model uses M 
modelling a 
numeric modelling 
tool to execute its 
calculations. 

High efficiency 
Building (HEB) 
model 

CEU 11 
regions 
includin
g EU 27 
and  
selecte
d 
countri
es, such 
as 
China, 
US and 
India 

2005-2050 HEB model uses a 
bottom- up 
approach to 
calculate the 
energy 
performance of the 
buildings 
irrespective of the 
measures taken to 
accomplish it. 

HEB model analyses building 
energy use and CO2 emissions. 
Tis model uses a systemic 
perspective which is the 
performance of the whole 
system (e.g. whole buildings) 
and these performance values 
are used as inputs in the 
scenarios. Moreover, this 
model captures the diversity of 
solutions required in each 
region by having region-
specific assumptions about 
advanced and sub-optimal 
technology mixes. 

-Population 
-GDP 
-Energy 
Use 
-
Technologi
cal 
-
Developme
nt 
-Building 
stock 

Closed Gueneralp 
et al. 
(2017) 
Urge-
Vorsatz, D. 
et al. 
(2012) 

Building integrated 
solar energy (BISE) 
Model 

Ksenia  
Petrichenk
o   

11 
regions 
across 
the 
globe 

2005-2050 BISE model uses a 
bottom-up 
approach with 
geospatial analysis. 

This model combines energy 
modelling by incorporating 
energy use by the building and 
on-site solar energy 
production with geospatial 
analysis, using a number of 
geographic information 
systems (GIS).  The 

-Building 
stock 
- Top of 
atmospher
e 
irradiation, 
-Global 
irradiation, 

Closed Petrichenk
o, K. 
(2015) 
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main objective of this model is 
to ascertain the highest 
possible technical potential of 
solar energy which is 
integrated in the building to 
meet energy needs of the 
building.  

-Ambient 
temperatur
e,  
-Wind 
speed 

Energy Demand 
Generator (EDGE) 
model 

PIK Global 2010-2100 The EDGE model 
does both short-
term and long-
term projection 
based on different 
scenarios.  

EDGE model projection follows 
four steps: 1) firstly, it collects 
historical data and then based 
on that, scenario projections 
of the energy demand in the 
buildings sector are made. 2) It 
calculates useful energy 
demand and also the floor 
space. 3)  EDGE model 
estimates the future changes 
in final-to-useful energy 
efficiencies as well as energy 
carrier shares for each end-
use. 4) Lastly, final energy 
demand is computed for the 
building sector.  

-Population 
-Population 
density 
-per capita 
income 
- Heating 
and Cooling 
Degree 
Days 
-Floor 
space 
demand 

Unknow
n 

Levesque 
et al. 
(2018) 

Demand for Energy 
Services, Supply 
and Transmission 
in EuropE 
(DESSTINEE) moel 

Bossmann & 
Staffell 

Europe 
at 
country-
level 

2050 DESSTINEE model 
uses stimulation 
method to explore 
future energy 
system transition 

The DESSTINEE model is  
intended to test presumptions 
about the technical  
prerequisites for energy 
transport (particularly for 

-Population  
-Economic 
growth 

Open Staffell, I. 
L., & 
Bossmann
, T. (2015) 
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pathways for 
Europe. 

electricity), and the associated 
challenges to  build up the 
fundamental framework.  
DEESTINEE consists of three 
modules: a scenario generator, 
a demand profile builder, and 
an electricity market 
simulator.   

- Fuel and 
carbon 
prices 
- Efficiency 
improveme
nt 
- Heating & 
Cooling 
thresholds 

Dynamic high-
Resolution 
dEmand-sidE 
Management 
(DREEM) model 

TEESlab 
UPRC 

1. 
Regiona
l 
2. 
Nationa
l (after 
upscale) 

User-
defined 
(e.g., 2015 
- 2030, or 
2020 - 
2050) 

DREEM model is a 
hybrid bottom up 
model which  fills 
in as a passage 
point in Demand-
Side Management 
displaying in the 
building sector. 
DREEM model uses 
Python 3, Modelica 
to construct its 
modelling 
platform.  

DREEM model is decomposed 
into  many individual modules 
namely “the interdependence 
of decisions within modules; 
the independence of decisions 
between modules; and the 
hierarchical dependence of 
modules on components 
embodying standards and 
design rules” (Stavrakas and 
Flamos 2020).  This particular 
methodology takes into 
consideration greater 
adaptability regarding 
conceivable framework 
arrangements and 
computational proficiency 
towards a wide scope of 
situations concentrating 

-Weather 
data 
-Climate 
Zones 
-Building 
specificatio
ns 
-Activity 
profiles 
-Appliances 
data 
-Thermal 
comfort 
parameters 
-
Competitiv
e electricity 
-HVAC, PV 
& storage 

closed Stavrakas 
and 
Flamos 
(2020) 
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various parts of end-use It 
likewise gives the capacity to 
fuse future innovative 
achievements in detailed 
manner.  

installation
s, smart-
Thermostat 

Invert/Accounting TU Wien 32 
Europe
an 
Countri
es 

2010-2055 
(2080) 

The 
Invert/Accounting 
model builds on 
the Invert/EE-lab 
model and it is a 
dynamic simulation 
model that 
calculates the 
energy demand 
and supply, costs 
and emissions for 
heating and 
cooling of buildings 
based on technical 
building properties 
using archetype 
buildings. It uses  
Python to derive 
the model 
outcomes.  

The Invert/Accounting model  
evaluates the effects of 
different exogenously defined 
retrofitting measures and 
retrofitting rates on the total 
energy demand, energy carrier 
mix, CO2 reductions and costs 
for space heating, cooling, hot 
water preparation and lighting 
in buildings. It provides a 
detailed view on energy 
demand, GHG emission, and 
cost for space heating and 
cooling, hot water and 
auxiliary energy in buildings.  

-Building 
stock 
- Climate 
zones 
- 
Predefined 
retrofitting 
measures 
and 
retrofitting 
rates 

Closed Fritz 
(2016). 
Steinbach 
(2016) 
Müller 
(2015) 
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Source: Own elaboration

Invert/Opt TU Wien 32 
Europe
an 
Countri
es 

2010-2055 
(2080) 

The Invert/Opt 
model builds on 
the Invert/EE-lab 
model. It is an 
optimization model 
as well that 
calculates the least 
cost building stock 
transformation for 
a given point in 
time under 
restrictions such as 
CO2- target 
emissions, 
availability of 
energy carriers in 
different regions 
and building types 
and/or shares of 
heated building 
areas per energy 
carriers.  

The Invert/Opt model derives 
the least cost building stock 
configuration under 
consideration of the existing 
building stock, 
technoeconomic 
transformation costs (costs of 
retrofitting measures), energy 
prices, availability of energy 
carriers, upper and lower 
boundaries on retrofitting 
rates and upper and lower 
boundaries on the share of 
heated area per energy carrier. 
From the results detailed 
insights on the total energy 
demand, energy carrier mix, 
CO2 reductions and costs for 
space heating, cooling, hot 
water preparation in buildings 
can be gained. Due to its focus 
on heating and the underlying 
demand calculations it is 
recommend that to apply it to 
regions with similar climate 
and housing structures as are 
found in Europe. 

Building 
stock 
- Climate 
zones 
- price and 
cost data 
- 
availability 
of energy 
carriers 
- targets for 
CO2-
emission 
reduction, 
shares of 
energy 
carriers 

Closed Fritz 
(2016). 
Steinbach 
(2016) 
Müller 
(2015) 
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Table 1 shows some of the key building-sector related energy demand models and from this review, 
it is clear that the majority of these models focuses on specific end-use functions of the building 
sector such as space heating and cooling, lighting, water heating, and appliances. Analyzing these 
end-use functions requires detail micro-level information, and hence, most of the models reviewed 
in table 1 use bottom-up approach to analyze the energy demand of the building sector. Another 
key reason behind using bottom-up approach is that this approach identifies the most feasible 
options among the best available technologies and processes for carbon reduction targets (Rivers 
and Jaccard, 2005).  
Further, the models reviewed in this study, have mostly estimated their predictions of energy 
demand and CO2 emission based on different scenarios to incorporate certain changes such as policy 
intervention or technological improvement. These changes are then compared with a reference 
baseline which shows no significant changes. This way the effect of a policy intervention or a 
technological improvement can be calculated as “a difference between the reference baseline and 
the scenario with technological changes” (Urge-Vorstaz et al. 2012). For instance, the Wuppertal 
model considers two scenarios- more precisely one ‘efficient’ scenario that considers 
implementation of different energy efficiency measures, which is compared with a business- as 
usual (status quo) scenario. The efficient scenario in every model essentially comprehends various 
strategies to mitigate CO2 emission. The common strategies that are incorporated in the efficient 
scenario are as follows: 

• Retrofitting building envelope which includes higher insulation of walls, roofs, slabs, and 

ceilings 

• More energy-efficient HVAC systems 

• More efficient water heating systems 

• More energy-efficient appliances  

• Integration of renewable energy  

• Energy-efficient lighting 

• Carbon taxing  

• Behavioral changes   

With the help of these various strategies, the final outcome of the models analyzed are mostly two 
- 1) energy consumption/energy demand, and 2) CO2 emission.  
The majority of the energy demand models take the above-mentioned mitigation options to build 
their scenarios and accordingly they project energy demand under different scenarios. For instance, 
both HEB and BUENAS model project final energy demand globally to be reduced by 50% and 37% 
respectively by 2030 under ‘efficiency scenario’ compared to their baseline (Urge-Vorstaz et al. 
2012). Similarly, Economidou et al. (2018) study use Invert/EE-Lab model to analyze energy 
consumption by the building sector of Cyprus. This study has found that the final energy 
consumption which includes energy consumption for cooling, heating, hot water, and lighting, in 
Cyprus is likely to decrease up to 16% in 2050 compared to the baseline scenario. In these models 
efficiency scenario assumes most ambitious mitigation options/ policies compared to their baseline 
scenarios and the final energy demand is derived from energy demand of end-use functions such as 
demand for space heating and cooling, and demand for water heating. Some studies (see Roberts, 
2008; Madlener, & Sunak, 2011; Levesque et al. 2018) argue that due to population growth and 
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hence, increase in the floor area, the energy demand for heating and cooling, and appliance will 
increase rapidly in future under the status-quo scenario. However, Urge-Vortsaz et al. (2012) study 
show that despite the increase in the floor area (approximately 127% increase in the floor area 
globally) the demand for water heating, and space heating and cooling can be reduced up to 29% 
and 34% respectively by 2050 if ambitious climate policies are taken. Here, it is important to note 
that these efficiency scenarios used by the HEB model, Invert/EE-Lab model or by BUENAS model 
do not incorporate the integration of renewable energy sources and also they do not incorporate 
the behavioral changes as well. Niamir et al. (2018) study show by using the BENCH model that the 
behavioral change alone can save up to 20-36% of energy by 2030 in the Navarre region of Spain. 
This shows the potentiality of behavioral change to obtain energy savings. Thus, demand models 
should incorporate behavioral change in their efficiency scenario. In contrary to the efficiency 
scenario results and incorporation of ambitious climate policies, Levesque et al. (2018) study project 
final energy demand by using EDGE model which shows that without any further climate change 
policies, the final energy demand of the building sector could increase up to 226% globally by 2100. 
Similar to the above-mentioned studies, this study also derived final energy demand by 
incorporating demand of appliance usage along with space heating and cooling. Moreover, it is 
important to note that historically energy demand is not stable across the year. Seasonal variability 
is another crucial factor that determines energy demand of the building sector. For instance, Staffell 
and Pfenninger (2018) study use DESSTINEE model to show that Britain’s energy demand increases 
by 24% in January (mean January demand) in 2030 compare to the 2015 level, while demand in 
summer remains almost unchanged. This rise in demand in winter is caused by the projected 
increase in the residential heat pumps. However, on the positive side, it is projected in the Staffell 
and Pfenninger (2018) study that by 2030 almost 44% of Britain’s net energy demand can be met by 
renewable energy sources. The use of renewables would although make the energy system less 
carbon-intensive, but it makes the energy system more weather dependent, and hence, seasonal 
weather profile would emerge as an important factor in the future that also determines the gross 
demand for energy. 
Globally around 35% of the CO2 emissions from the buildings sector come straightforwardly from 
the buildings themselves in the form of direct energy-related CO2 emissions, and 65% of the 
emission comes indirectly from the power sector through consumption of electricity as the 
electricity-related indirect CO2 emissions (Urge-Vorstaz et al. 2012). Hence, to reduce CO2 emission, 
along with energy demand reduction decarbonization of the energy supply sector is also required. 
The energy models used to analyze building-sector emission often assume various emission factors 
to project the emission in different time period. That is why it is difficult to compare the emission 
projections of the different energy models. However, still, to provide a general trend of the 
emission, this study discusses the global trend, more precisely the emission mitigation potential of 
the building sector globally provided by different energy demand models. For instance, both HEB 
and BUENAS model predicts 29% and 13% GHG emission reduction respectively by 2030 compared 
to their baseline scenario if mitigation measures are taken.  As per Urge-Vorstaz et al. (2012) by the 
year 2050, 41% emission reduction is possible globally from the building sector compared to the 
baseline (2010 level) scenario.  
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Different models provide a different range of results due to various scenario-related assumptions 
and different methodologies used in the model. Thus, the magnitude of the different end-use 
demand may change if scenario-related assumption changes, but the trend gather from different 
energy demand remains the same. More precisely, the trend suggests if no further policy/action is 
taken, then building energy demand rise immensely and ambitious climate policies/actions, it is 
possible to reduce the building sector energy demand. Another observation can be made from this 
review which is, most of the building-sector demand models are closed models and hence, it is 
difficult to compare their results, but a trend can be derived from these different results produced 
by different energy models. In most cases, the assumption of the models and their mathematical 
equations are also not open which makes them a ‘black box’ and hence arises difficulty in the time 
of comparing the results of different energy models. More such issues are discussed in section 
3.1.1.1 below.  
 

3.1.1 Critical issues with modelling energy demand for the building sector: 

Energy models usually assume some underlying structural relationships with the economy to be 
constant or vary in a gradual fashion. For instance, people may not rely on government policies to 
mitigate emissions but rather they can start voluntary actions to mitigate global warmings. These 
structural assumptions may oversimplify the energy system. Further, the forecast of energy demand 
often makes presumption about human conduct and innovations that evolves gradually. Laitner et 
al. (2003) study identified some of the reasons which include an inaccurate description of the 
behavior of economic agents, inadequate inclusion of both environmental  and social impacts, and 
lack of adequate technological details, due to which modelling projections often vary from the real 
data. In some cases, these changes in individual behavior or technological innovation occur in ways 
that we cannot anticipate. Thus, static energy models often misinterpret the real world because 
sometimes the changes are unpredictable and unforeseeable (Craig et al. 2002). Furthermore, data 
availability is another key issue with projecting demand precisely. Data are limited and often 
incomplete, and thus, few important characteristics of the energy system or economy may not be 
incorporated in the model. Along with these general issues with modelling energy demand, there 
are some building sector specific issues of energy demand models. Energy demand modelling for 
the building sector has three key issues related to; 1) modelling of lock-in effect, 2) integration of 
both energy efficiency measures and renewable energy sources, and 3) modelling of individual 
behavior. Each of these issues is discussed in the section below: 

1) Modelling of lock-in effect: The lock-in more precisely carbon lock-in limits technological, 

economic, political, and social efforts to reduce carbon emissions (Seto et al. 2016). Carbon 

lock-in possesses several challenges towards limiting global warming at 1.5o. There are three 

major ways by which lock-in can limit the potential of a mitigation strategy: (a) technological 

and infrastructural lock-in: this type of lock-in is associated with the technologies and 

infrastructure which influence energy supply and hence, indirectly or directly emits CO2. For 

instance, investment in long-lasting built infrastructure such as buildings, land use patterns, 

influence the energy demand patterns as the components of the built environment 

determine energy demand for a considerable length of time after their development (Seto 
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et al. 2016). This way, investment in long-lasting built infrastructure, which is not energy 

efficient by design, would result in carbon lock-in. (b) institutional and governance lock-in: 

Institutional and governance type of lock-in affect energy production and energy demand. 

Institutional and governance lock-in is a characteristic of institutions and type of governance 

that arises through the coevolution of multiple systems such as ‘technological, economic, 

scientific, political, social, institutional, and environmental spheres’ (Könnölä et al. 2006; 

Seto et al. 2016). For instance, the government often reduces the unit prices of electricity 

and formulate policies to expand coal-based electricity (Foxon 2002). As a consequence, the 

demand for electricity increases and hence, carbon emission from electricity consumption 

would also increase. (c) Behavior lock-in:  Individual behavior and habits, are often influence 

energy consumption. Habits such as heating and cooling habits- use heater/cooler when it is 

required, use (or misuse) of appliances-for example switching off the appliances after use, 

have significant energy and emissions implications by locking-in the rate and magnitude of 

any mitigation measure (Shove and Walker 2014; Seto et al. 2016). The socio-technical 

structure of society often shapes consumers’ choices towards more energy-consuming ways 

of life (Maréchal 2010). Thus, in other words, it is safe to conclude that institutional and 

governmental lock-in can result in a behavioral lock- in.  

Along with these three kinds of lock-in, there is another type of lock-in which can be referred to as 
adaptation-time lock-in. Adaptation of new technologies often takes time and hence there is a risk 
of compromising with an inferior technology instead. Studies (see (Norberg-Bohm 1990; Mulder 
2005; Urge-Vorstaz et al. 2012) show that in the short to a medium-term like 2030 to 2050, the 
adoption of new energy-saving technologies could significantly reduce energy use. As cited in Urge-
Vorstaz et al. (2012) study that “the main reason for the lock-in effect is the delay in adoption and 
slow diffusion of new and more efficient technologies” (Urge-Vorstaz e al. 2012). These existing 
technologies, institutions, and behavioral norms together often compel the rate and the scale of 
carbon emissions reductions. Understanding the nature of lock-in would help in identifying the 
alternative paths and strategies to achieve full mitigation potential (Seto et al. 2016). However, till 
now, most of the building models do not incorporate lock-in rigorously and thus, as a result, the 
projection of future energy demand may not provide a comprehensive picture of the future energy 
demand. Moreover, the potential climate change policies may be seen as under-achiever due to 
these lock-in effects and hence would result in underinvestment. Among all the building models 
reviewed in this study, only High efficiency building (HEB) model calculates the lock-in effect as the 
difference between thermal energy use levels achieved under two scenarios: moderate efficiency 
scenario and deep Efficiency with respect to the base year. However, this HEB model does not 
differentiate between different types of lock-in.  

2) Integration of renewable and energy efficiency measure: Renewable energy sources and 
energy efficiency measures to meet building energy demand are essential to curb down 
global temperature rise. Although many of the energy models do show the potential of 
different energy efficiency measures and renewable energy use to meet the energy demand 
from building sector under different scenarios, but there are almost no model which 
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investigates the potentiality of the integrated system- meaning combination of both energy 
efficiency measures and renewable energy use to meet building sector energy demand. 
However, it is crucial to explore the feasibility of the use of renewable energy- more 
precisely, explore the possibility of whether a sufficient amount of renewable energy is 
available to meet the building energy demand. Furthermore, in the building sector, the 
importance of smart grid or smart buildings has gained interest recently, but until now, 
majority of the building sector-related energy models have projected energy demand by 
using a component-oriented approach which means energy models often consider building 
as a sum of separate components. This approach lacks the complexity of the building systems 
and hence, ends up delivering an over-simplified analysis of the energy demand (Urge-
Vorstaz et al. 2012). Thus, the feasibility of the integrated approach of incorporating both 
renewable energy sources and energy efficiency measures to meet energy demand is 
required in order to project the building energy demand more accurately.  

3) Modelling of human factor: Most of the building-related energy models do not incorporate 
human factors. The human factors such as occupant choices, lifestyle, and behavior in 
buildings, significantly affect energy consumption (Abergel et al. 2017). It is often the case that 
the design of a building influences the occupant’s feeling of comfort and hence, influences 
the energy demand of the building. Modelling of human factor or modelling of behavioral 
lock-in should definitely be incorporated in the model that projects the energy demand of 
the building. For example- energy efficiency measures such as daylight harvesting, passive 
heating and cooling would certainly reduce the energy consumption of the occupant only if 
the occupant has adopted these measures successfully.  
 

3.2 Transport sector: 
Transport or mobility plays a key role in the human well-being, and economic development and 
studies show (Kahn Ribeiro et al. 2007; Moriarty, and Honnery, 2008) that globally transport 
activities are increasing as economies grow. The transport sector globally was responsible for 
approximately 23% of total energy-related CO2 emissions which is equivalent to 6.7 GtCO2 in 2010 
(Sims et al. 2014). As per IPCC fourth assessment report, despite the increasing share of energy-
efficient vehicles, the growth in the transport sector related GHG emissions has continued. More 
precisely, globally emissions from the transport sector have increased by 2% annually during the 
period of 2000-2017, which equivalents to 8 GtCO2 (IEA 2019). The key issues with transport sector 
activities are associated with petroleum dependence, air pollution, traffic fatalities and injuries, and 
congestion (Kahn Ribeiro et al. 2007). The intensity of oil dependence of transport is almost the 
same in developed and developing nations. For instance, in the EU, 94% of the energy needs from 
the transport sector are met by oil (European Commission 2016). Thus, in order to decarbonize the 
transport sector, the transport sector needs to get rid of its oil dependence. Here it is important to 
understand that the emission potential is the same from passenger and freight transport sector, 
while the road sector offers the biggest extent of mitigation potential (SLoCaT 2018). Presently the 
majority of the road transport vehicles and equipment are powered by internal combustion engines 
(ICEs), where gasoline and diesel are used as the main fuels for Light-duty vehicles (LDVs) and 2- and 
3-wheelers (Sims et al. 2014). Diesel is used for Heavy-duty vehicles (HDVs) and diesel or heavy fuel 
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oil, and grid electricity is used for the trains. From this trend, the petroleum dependence of the 
transport sector gets clearer. Therefore, the mitigation techniques should be designed primarily 
focusing on road transport sector.   
Decarbonization of the transport sector requires either through demand control or through 
technological improvement. For instance, the total demand for motorized transport can be reduced 
by encouraging active transportations (such as walking, cycling, and use of public transport). An 
expansion of public transport and improvement in the infrastructure for active transportation in 
cities could obtain up to 40% reduction of urban passenger transport emissions by 2050 (Huizenga 
et al. 2017). Moreover, switching to high-efficiency vehicles which include electric vehicles, battery 
vehicles, is another option to reduce emissions from the transport sector (Pietzcker et al. 2014).  
There are other alternatives to mitigate the emission from the transport sector by using clean fuels 
such as advanced biofuels, hydrogen and renewable synthetic fuels. For example, as per the 
European Commission 2016 fact sheet, 15-17% of oil demand by the transport sector can be 
replaced by low-emission energy in 2030 (European Commission 2016). However, to keep the global 
warming at 1.5 degrees, the emission from transport sector cannot be more than 2-3 gigatonne (Gt) 
emissions/year by mid-century (Huizenga et al. 2017) which is equivalent to around 68% emission 
reduction compared to the present emission scenario. Therefore, to achieve the 1.5-degree target, 
both modal shift and technological improvement to energy-efficient vehicles are required.  
It is often the case that the policymakers struggle to develop comprehensive policy packages to 

achieve a low-carbon transport system, as most of the policy options/strategies only consider 

technological advancement with an assumption of societal and personal preferences being 

unchanged. For instance, in the UK, national strategy development is mostly formed mostly by 

gathering data from techno-economic modelling of the energy system and/or the transport system 

(Brand et al. 2012). Thus in the table below of the key transport models are discussed: 

 

Table 2: List of energy demand models for the transport sector
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Model name Host 
institution 

Time 
span 

Geographi
c coverage 

Modelling 
method/approach 

Description of the model 
(some key assumption, a brief 
description of the model, 
specific end-use analysed) 

Key drivers License 
(Open/c
lose) 

Key 
relevant 
papers/re
ports 

Assessment of 
Transport 
Strategies-  ASTRA 
model 

Fraunhofer-
ISI, IWW 
Karlsruhe 
and 
TRT 
Trasporti e 
Territorio 

2050 EU 27 
member 
states  

ASTRA is an 
integrated 

assessment model 
which uses 
simulation 
methodology to 
link transport 
module with 
macro-economic 
module. 

The model is based on the 
System Dynamics approach to 
interpret nine modules which 
includes vehicle fleet model, 
transport model, emission and 
accident models. Moreover, 
ASTRA covers a wide scope of 
strategies with adaptable 
planning and  levels of 
approach execution. Potential 
policies incorporate standard 
setting, fuel tax assessment, 
speed limits, carbon charges, 
and so on. 

-Macro – 
economic 
parameters  
-Fuel use 
-Population 
 

Open http://ww
w.astra-
model.eu/ 
Fiorello et 
al. 2010 

GCAM Pacific 
Northwest 
National 
Laboratory 

2100 Global GCAM uses a logit 
choice formation 
method to model 
various mode of 
transport. 

GCAM model uses logit choice 
formation technique to model 
passenger transport, freight 
transport, international 
shipping with the demand of 
the each transportation service 
along with the population. 
Moreover, this model 
considers the competition 

-Micro and 
macro-
economic 
parameters 
-Fuel type 
used 
-Cost of 
infrastructu
re 

Open Pietzcker et 
al. 2014 

http://www.astra-model.eu/
http://www.astra-model.eu/
http://www.astra-model.eu/
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between different modes of 
transport by using a logit choice 
mechanism. GCAM model 
analyse the social cost of using 
different modes of transport 
globally. 

-Modes of 
transport 

PRIMES-TREMOVE E3M Lab, 
NTUA 

2000-
2050 

EU-27 
member 
states 

This model uses a 
simulation 
technique to 
model transport-
related activities. 

The PRIMES-TREMOVE is a 
dynamic system of multi-agent 
choices of different transport 
activities.  The projection is 
done by considering several 
factors which includes choices 
related to economic, and 
technology of transportation. 
Moreover, this model 
incorporates costs (operation 
costs, investment costs, 
emission costs, taxes), 
congestion, and other public 
policies, which influence the 
choice of transportation 
modes. The PRIMES-TREMOVE 
model comprises of two 
principle modules, the 
transport demand allocation 
module and the technology 
choice and equipment 
operation module.  The two 

-Economic 
parameters 
-Stock of 
different 
modes 
-Type of 
fuel used in 
different 
modes 

Unknow
n  

Capros,, & 
Siskos, 
2012 
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modules communicate with 
one another and are 
comprehended at the same 
time. 

World Induced 
Technical Change 
Hybrid- Transport 
(WITCH-T) model 

Fondazione 
Eni Enrico 
Mattei 

2100 Global WITCH-T models 
uses both bottom-
up and top-down 
approaches, in 
other words hybrid 
approach to 
project mobility 
demand for all the 
transportation 
modes. 

In this model, the mobility 
demand is exogenously 
anticipated dependent on the 
local GDP and vehicle 
proprietorship. In order to 
calculate the final energy 
demand from the mobility 
demand, WITCH-T model uses 
investment- more precisely 
investment in different vehicle 
technologies. 

-Economic 
parameters 
-
Investment  
-Cost 
-Energy 
usage 

Unknow
n  

Pietzcker et 
al. 2014 

REMIND Potsdam 
Institute for 
Climate 
Impact 
Research 

2100 Global REMIND uses a 
hybrid approach to 
project the energy 
demand from the 
transport. 
Moreover, it uses a  
inter-temporal 
optimization 
technique to 
model energy 
demand for the 4 
transport sub-
sectors. 

REMIND model determine the 
energy demand from the 
transport sector by using a 
hybrid approach. More 
precisely, mobility demands for 
the four sub-sectors namely 
passenger-light duty vehicles 
(LDV), freight, electric rail, 
passenger-aviation and buses) 
are derived by using a top-
down approach, and for the 
LDV mode, different 
technology options are 

-Economic 
parameters 
-
Investment 
costs 
-
Technologi
cal details 
for 
different 
mode of 
transports 

Unknow
n 

Pietzcker et 
al. 2014 
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available, hence, a linear 
bottom-up approach is used to 
incorporate these 
technological details. 

-Efficiency 
improveme
nts  

Transport 
Integrated model 
of Europe 
(TRIMODE) 

TRT 
Trasporti e 
Territorio, 
PTV AG, 
E3MLab, 
MDS 
Transmodal
,Bauhaus 
Luftfahrt, 
M-Five, 
Fraunhofer-
ISI, INRIX 

2015-
2050 

Europe TRIMODE model 
uses stimulation 
technique to 
project energy 
demand of the 
transport sector in 
Europe. 
Furthermore, it 
uses a two-layer 
General 
Equilibrium 
method to 
determine the 
macroeconomic 
parameters. 

This model considers four 
modules: passenger and freight 
movements across Europe, 
energy module, and economy 
module. This model is used to 
understand the comprehensive 
range of infrastructure 
investment, pricing, 
technology and regulatory 
policy scenarios-related to 
transport sector in Europe. 
TRIMODE uses the PTV Visum 
platform, GAMS software and 
Python scripts to estimate the 
future energy demand for 
these four transport modules.  

-
Macroecon
omic 
parameter 
-Vehicle 
stock 
-Energy 
prices 
-
Technologi
cal details 

Unknow
n 

Fiorello et 
al. 2018 

http://ww
w.trt.it/en
/ 
PROGETTI
/trimode_
project/ 

Multi-Agent 
transport 
Simulation 
(MATSim) 

ETHZ 2030 Global  MATSim uses a 
large-scale agent-
based simulation 
method to project 
the energy demand 
from the transport 
sector, and the 
traffic flow of a 

MATSim model is an activity-
based, extendable, multi-agent 
simulation model. It is an open-
source model-meaning it can 
be downloaded easily from the 
web. This model provides a 
framework for demand-
modeling, agent-based 

-Economic 
parameters 
-Vehicle 
stock 
-Travel 
demand 

Open Horni et al. 
2016 
https://www
.matsim.org
/ 
about-
matsim 

http://www.trt.it/en/
http://www.trt.it/en/
http://www.trt.it/en/
https://www.matsim.org/
https://www.matsim.org/
https://www.matsim.org/
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country/region. 
This model is 
implemented in 
Java. 

mobility, precisely traffic-
simulation, and a controler to 
iteratively run simulations 
along with the methods to 
analyze the output which are 
generated by the different 
modules. 

UK Transport 
Carbon Model 
(UKCM) 

UKERC 2050 UK UKTCM  is a highly 
disaggregated 
model which uses  
bottom-up 
approach to model 
the energy service 
demand of the 
transport sector in 
the UK. 

This model incorporates 
different vehicle choices by 
incorporating different modal 
choice and trip patterns which 
influence the transport service 
demand. To elaborate this 
further, UKTCM model 
provides annual projections of 
supply and demand by the 
transport sector, for all 
passenger and freight 
transport, and also it calculates 
the corresponding annual 
energy use, life cycle emissions 
and environmental impacts. 

-Economic 
parameters  
-
Demograph
ics  
-Car 
ownership 

Unknow
n 

Brand et 
al. 2012 
Anable et 
al. 2012 
 

Transport 
European 
Simulation Tool- 
(TRUST) 

TRT 2016-
2050 

Europe TRUST model uses 
a simulation 
technique and is 
built in  PTV VISUM 
software.  

TRUST is a transport network 
model which analyses the 
assignment of Origin-
Destination matrices for 
passenger and freight 

- Speed-
flow 
functions 
- Transport 
costs by 
mode 

Unknow
n 

TRT (2018) 
http://ww
w.trt.it/w
p/wp-
content/u
ploads/20

http://www.trt.it/wp/wp-content/uploads/2016/09/TRUST-model-detailed-description-1.pdf
http://www.trt.it/wp/wp-content/uploads/2016/09/TRUST-model-detailed-description-1.pdf
http://www.trt.it/wp/wp-content/uploads/2016/09/TRUST-model-detailed-description-1.pdf
http://www.trt.it/wp/wp-content/uploads/2016/09/TRUST-model-detailed-description-1.pdf
http://www.trt.it/wp/wp-content/uploads/2016/09/TRUST-model-detailed-description-1.pdf
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Source: Own elaboration 

transport demand. The main 
output of this model is the load 
on road network links and it is 
presented as vehicles per day. 
Moreover, TRUST model also 
present data on non-road links 
in terms of number of trips 
and/or tonnes per day. 

- Values of 
travel time 
- Average 
fuel 
consumpti
on 
- Emission 
factor 

16/09/TR
UST-
model-
detailed-
descriptio
n-1.pdf 

Battery electric 
vehicles potential 
(BEVPO) model 

ETHZ  Selected 
EU 
countries 

BEVPO model uses 
a stimulation 
technique to 
evaluate trips as 
shares of charging 
and non-charging 
events. BEVPO is 
developed by using 
an object-oriented 
Java program. 

BEVPO model does not only 
evaluate the potentials of BEV 
but, moreover it looks at 
driving patterns of the electric 
vehicles and based on that 
evaluates the vehicle stock, 
charging and infrastructure 
policies. BEVPO can be used to 
understand the traffic load 
pattern of a nation.  

-Vehicle 
stock 
-Car trips 
-Geo-
spatial data 
for 
charging 
station 
coordinate 
s 
 

Unknow
n 

Melliger et 
al. (2018) 

http://www.trt.it/wp/wp-content/uploads/2016/09/TRUST-model-detailed-description-1.pdf
http://www.trt.it/wp/wp-content/uploads/2016/09/TRUST-model-detailed-description-1.pdf
http://www.trt.it/wp/wp-content/uploads/2016/09/TRUST-model-detailed-description-1.pdf
http://www.trt.it/wp/wp-content/uploads/2016/09/TRUST-model-detailed-description-1.pdf
http://www.trt.it/wp/wp-content/uploads/2016/09/TRUST-model-detailed-description-1.pdf
http://www.trt.it/wp/wp-content/uploads/2016/09/TRUST-model-detailed-description-1.pdf
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The mode of transport for a personal trip is determined by various factors which include distance to 
the nearest center, travel cost, land-use, travel time, personal preference (Scheiner 2010; Zhang et 
al. 2017). The choice for mode of transport further determines the travel demand and transport-
related emissions. Thus, transport-related energy demand models estimate the travel demand by 
incorporating the modal split.  
Table 2 shows several such models that are used to project/estimate the energy needs of the 
transport sector. From these reviewed models, it is considered that transport-related emission 
mitigation policies would include the following: 

• Speed control,  

• Fuel efficiency  

• Traffic signal coordination,  

• Vehicle efficiency  

• Battery/electric vehicles 

• Intelligent Transport System (ITS),  

• Public transport improvement,  

• Land use planning  

• The modal shift towards public transport and active transportation 

• Carbon capture storage (CCS) 

Most of the mitigation techniques aimed at the transport sector can be structured by the Avoid-
Shift-Improve (A-S-I) framework (SLoCaT 2018). Each of the components of A-S-I framework is 
discussed below: 

• Avoid: This component of A-S-I framework emphasizes avoid mechanism where a 

rider/passenger avoids any travel done by motorized mode. Public transportation 

improvement is an excellent example of avoid component where improvement in public 

transportation would reduce travel distance by individual motorized modes of transport.  

• Shift: If passengers and freight travel shift towards a sustainable mode of transport such as 

walking or cycling then this ‘shift’ can achieve a significant emission reduction target.  

• Improve: Unlike avoid and shift component, improve is more of a supply-side mechanism 

which focuses on improving the energy efficiency of transport modes and vehicle 

technologies. Speed control and traffic signal coordination are two good examples of 

improve approach.  

Despite this precise decarbonize framework and different mitigation options to decarbonize the 

transport sector, it is still a big challenge to decarbonize the transport sector.  One of the key reasons 

behind this challenge is the fact that the mobility sector in general respond less to the mitigation 

options/policies compared to the other sectors (Schäfer and Jacoby 2006; Banister et al. 2011; 

Pietzcker et al. 2014). Moreover, as it is discussed at the beginning of section 3.1.2, the transport 

sector is dependent on fossil fuel and its demand remains persistent (Pietzcker et al. 2014). 

However, different energy demand models reviewed in table 2 show a substantial potential to 

achieve significant emission reduction by mid-century. For instance, three models namely REMIND, 

WITCH-T and GCAM used in Pietzcker et al. (2014) study show us that the transport sector globally 
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can achieve up to 90% emission reduction by end of the century compared to the baseline scenario. 

Both the GCAM and REMIND model develop their mitigation scenario by incorporating fuel 

efficiency, with the use of CCS. Precisely, these models develop their mitigation scenario with the 

reliance of liquid fuels- more precisely 85% of the transport-related final energy is met from liquid 

fuel even in the stringent mitigation policy scenarios (Pietzcker et al. 2014). Thus, these models show 

that despite heavy liquid fuel reliance of transport sector, it can still achieve a substantial mitigation 

potential by improving fuel efficiency and demand management. In addition to the fuel efficiency, 

if the transport sector switched to the cost-effective battery electric cars until 2050 then emission 

from transport sector can be further reduced (this includes the fact that indirect emissions from 

electricity generation are still occurring) (Creutzig et al. 2015). Melliger et al. (2018) study uses the 

BEVPO model to show that battery electric vehicles (BEVs) 85–90% of all national trips in Switzerland 

and Finland “could have been covered with BEVs prevalent in 2016”. Furthermore, this study also 

argues that with BEVs it is possible to provide a road network coverage as high as 99% in both 

Switzerland and Finland provided, proper charging station infrastructure is in place and high-range 

BEVs are adopted. Moreover, energy models such as ASTRA and TRUST show that emission 

reduction through mobility management would also result in other co-benefits such as 

improvement in GDP, employment generation (Schade et al. 2018).  

3.2.1 Critical issues with modelling energy demand for the transport sector: 

Similar to the building sector, modelling of the energy demand of the transport sector does have 
some major issues-related to modelling lock-in effects or incorporating individual behavioral effects. 
More precisely, similar to the building sector, institution lock-in (for example unsustainable land–
use) may result in behavioral lock-in (for example, using cars to commute even for the short 
distance). The lock-in effects would eventually undermine the potential of any sustainable transport 
policy. Moreover, as discussed in the above section, the choice of mode is based on several factors 
which include individual preference as well. Thus, incorporating individual preferences into demand 
model would enhance the projection accuracy of the models. As it can be seen from table 2 that 
there are many transport models that incorporate individual modal splits and in order to incorporate 
individual modal split, these models use a discrete choice approach (Zhang et al. 2017). With a 
discrete choice approach although individual preference can be incorporated, but these discrete 
choice models/logistic models are unable to project the aggregate impacts such as overall emission 
from transport, or total demand for fuel. Hence, transport models that incorporate individual 
preferences although provide a clear picture about the future modal split or potential of a particular 
efficiency measure such as battery cars but, these models do not give a broader picture of its 
environmental impacts. Thus, usually unable to project the aggregate impacts.    
 

4.Discussion:  
As discussed in section 1.2, the demand for both primary and final energy has been continuously 
increasing over a decade as a result of population growth, and economic (unsustainable) 
development. This consistent rise in energy demand also results in higher energy related GHG 



         
This project has received funding 
from the European Union’s Horizon 
2020 research and innovation 
programme under grant agreement 
No 837089.  

 
 
 

 41 

emission as globally the energy system is still petroleum dependent. The share of renewable energy 
sources is still outweighed by the share of non-renewable energy sources such as coal, oil, and 
natural gas in order to meet the energy demand globally. Moreover, the level of investment in 
energy efficiency remains almost unchanged since 2014 (IEA 2020,7th February). As per IPCC (2018) 
report, “global warming is likely to reach 1.5°C between 2030 and 2052 if it continues to increase at 
the current rate”. These key trends indicate towards a policy gap and also it suggests immediate 
actions to reduce energy related GHG emission. More precisely, to limit global warming at 1.5 
degrees, the energy system needs to be decarbonized, because if the energy system is 
decarbonized, then a higher demand for energy would result in no/negligible impact on global 
warming. However, the transition towards decarbonization is not easy and it is always subject to 
resource and time constraints. Further, lack of understanding of consumer activity/behavior, social 
norms and misinterpreting demand trends can lead to misallocation of resources. Thus, strategic 
evidence-based planning is required to frame policies to decarbonize the energy system, and hence, 
energy models play an important role to formulate the strategies (Li et al. 2019). However, as it is 
discussed in section 3.1.1.1 and 3.1.2.1, the energy demand models do suffer from some serious 
issues (such as lack of transparency, unable to incorporate behavior changes) which may project the 
future in a simplistic manner. Some of the common issues of energy modelling are discussed in the 
section below:  
 
Data scarcity and energy demand modelling: 
Throughout section 3.1.1 and section 3.1.2, we have discussed various energy demand models from 
the building and transport sectors. These models can help in generating evidence by projecting 
future energy demand and the associated cost. However, the results of these energy models may 
not be accurate as the models have some strict assumptions or drawbacks. More precisely, as Li et 
al. (2019) study argues that the energy models including the demand models are structured and 
created to work under conditions of information shortage. Thus, any projection done by these models 
is characterized by uncertainties. Moreover, in the absence of adequate information to develop future 
scenarios and statistical methods, the underlying baseline data is used to develop the methods for 

projection which may contain critical gaps, because these gaps would enforce a reductionist 
representation of the real world (Li et al. 2019). For instance, the building sector is heterogeneous 
in nature- meaning energy demand varies based on the type of buildings which includes residential 
and commercial building sectors. Even within commercial building sectors, there are different types 
of buildings such as office space, retail, warehouse which have different demand patterns. Thus, in 
order to model energy demand, different types of building need to be accounted as well. However, 
there is little-to-no data on energy demand for these different types of buildings across regions, and 
time. Therefore, baseline data with some strict assumptions is often used to model the energy 
demand pattern of these buildings. Similarly, for the transport sector, getting data of different 
modal splits, and demographic data for the modal splits at the national level are difficult to obtain 
which are the key input data required to model transport demand.  
Data scarcity is probably the biggest challenge in modelling energy demand. Although there has 
been a significant advancement in data analyses through big data analysis, machine learning and 
artificial intelligence, but there are still major drawbacks in the existing energy models which need 
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to be addressed with the help of big data incorporation. Modelling energy demand requires 
different types of data which include spatial, temporal, demographic data. Different energy demand 
models use different type of data as per the objective of the model and different types of data poses 
different types of challenges. Table 3 below describes some of the challenges associated with 
different types of data associated with energy demand modelling.  
 
Table 3: Data scarcity and its associated challenges in the context of energy demand models  

Data Types  Challenges  

Spatial Energy demand models require detail spatial 
disaggregation to project and analysis energy demand for 
any activity. For instance, in order to model 
heating/cooling intensity and appliance ownership, 
models require spatial disaggregation data- more precisely 
data at regions, rural/urban level.  This spatial 
disaggregation often is based on some strict assumptions 
due to data scarcity.  

Temporal The demand for energy varies during different periods 
such as day, night, or different seasons. For instance, 
during office hour the number of vehicles is the highest 
compared to other time periods. Thus, data on both 
number of vehicles in the road along with the modal split 
in different time period are required to model energy 
demand of transport sector realistically. Data scarcity to 
incorporate temporal aspect could lead to inaccurate 
projection of future scenarios.  

Technological Many of the energy demand models especially the building 
sector models often use bottom-up approach which 
requires technological data in detail. In the absence of 
detail technological data, often simplistic aggregation is 
done which can lead to simplification of the demand, and 
inadequately differentiate between new technology 
investments. 

Socio-economic and 
demographic 

Similar to technological data, socio-economic and 
demographic data are required when bottom-up approach 
is used. Furthermore, without socio-economic and 
demographic data the distributional impacts of different 
policies.  

Behavioral data Majority of the energy demand models assume 
consumer/user behavior to be constant over time. 
However, studies have revealed that behavioral changes 
can significantly impact energy demand (Masoso, & 
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Data Types  Challenges  

Grobler 2010; Sorrell 2015). Thus, incorporation of 
behavioral data would make the demand models more 
realistic.  

Stock data For most of the energy models (as it can be seen from the 
energy models reviewed in section 3.1.1 and 3.1.2) require 
detail stock data to model energy demand realistically. Few 
of the key stock data (for example, building stock, vehicle 
stock, stock of different types of retrofitted buildings, and 
many more) are necessary to project future energy 
demand. Therefore, unavailability of stock data may lead 
towards inaccurate/unrealistic demand projection.  

Source: Own elaboration (adopted from Li et al. (2019) study in the context of energy demand modelling) 
 

With the advancement of methodologies of different energy models, new data gaps are identified 
almost every day. These data gaps are forcing energy models to make some strict assumptions that 
lead towards a simplistic analysis of energy demand. The challenges identified in table 3, need 
special attention while developing or running a model. Especially now with the objective of 
transition towards zero-carbon society, energy models require a huge chunk of disaggregated data 
through which projection of demand and planning of resources can be made more precisely.   
 
Energy demand and limiting global warming at 1.5 degree: 
The Paris agreement to limit global warming to 1.5 °C by 2100 generates challenges to find the 
optimum ways to succeed in achieving this goal and hence, it also generates an opportunity to 
understand the possible mitigation ways to achieve this goal (Hulme, 2016; Pedde et al., 2019). As 
it is discussed in section 3.1.1, to keep the global warming by 1.5-degree target, 60 Gt of CO2 
emissions reduction is required between 2010 and 2050 from the building sector globally (Wang et 
al. 2018). Similarly, transport-related emissions should be reduced to 2 to 3 Gt of CO2 globally by 
2050 which is equivalent to about 70 to 80% emission reduction below 2015 levels to meet the 
targets set in the Paris Agreement (SLoCaT 2018). Moreover, due to lock-in effects-for example, 
building and transport infrastructure-related decisions would lock-in both energy demand for 
building and transport for decades to come, and achieving Paris Agreement targets by 2050 will be 
difficult if the transition towards low carbon society is not started at the earliest time possible (Ürge-
Vorsatz et al. 2018; SLoCaT 2018). Thus, both the supply side as well as the demand side mitigation, 
are required to achieve such an ambitious target for these two sectors. However, so far only the 
supply side mitigation techniques and carbon dioxide removal (CDR) options along with storage 
technologies, particularly bioenergy with carbon capture and storage (BECCS) are emphasized as 
mitigation strategies (Mundaca et al. 2019). In other words, the demand-side solutions tend to be 
neglected in the 1.5-degree scenarios. Thus, a comprehensive understanding of demand side 
solutions would not only minimize the risks (for example, excessive reliance on large scale CDR 
options, or reliance on management of different solar radiation technologies) associated with 
supply side strategies, but also demand-side options have an immense potential to obtain multiple 
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impacts/co-benefits such as improvement in health, less pollution, energy security, equity, higher 
well-being, and many more (Ürge-Vorsatz et al. 2016; Creutzig et al. 2016; Chatterjee et al. 2018; 
Mundaca et al. 2019). Therefore, the demand side options should be incorporated into the energy 
models. With more rigorous and systematic modelling efforts, the role of the demand side 
mitigation strategies would provide more risk-free options to achieve the 1.5-degree goal.  
 
Assumptions of the energy demand models:  
As it is discussed in the above paragraph that in the absence of detail, the energy demand models 
often make some simplistic assumptions to build a model. Some of the assumptions although may 
have made due to the absence of data, but there are some assumptions that are structural, or 
scenario related. These assumptions may represent the economy/energy system in an over-
simplistic way. In general, the assumptions made in different energy models can be divided into 
three categories: 

1. Structural assumption: This kind of assumption is made about the certain structure of the 

society or economy or about energy systems. One such structural assumption which is often 

considered in energy demand models, is assuming symmetric price elasticity between 

energy price and energy demand. More precisely, symmetric price elasticity refers to the 

symmetric response to price increase/decrease in energy demand. However, studies have 

argued that it is not necessarily the case. As per these studies “energy demand response to 

the price increase is not necessarily reversed completely by an equivalent price decrease, 

nor is the demand response to an increase in the maximum historical price necessarily the 

same as the response to a price recovery” (Salisu and Ayinde 2016). This assumption of 

symmetric price response can misread other economic indicators (for example as well GDP 

of a nation, employment, energy security).  

2. Scenario-related assumptions: Majority of the energy demand models present their data for 

different scenarios which help the policymaker to decide on the type of policies. However, 

to project data for different scenarios, often some stringent assumptions are made. For 

instance, the HEB model made an assumption about technology mixes for different regions 

for different scenarios. In addition, an average achievable efficiency was assumed for each 

individual technology for each region to determine the water heating efficiency (Urge-

Vorstaz et al. 2012). The scenario-related assumptions have become necessary as it often 

the case that input data for future scenario projection are not available.  

3. Methodological assumption: Different models make diverse assumptions based on the 

modelling objective and methodology used in the model. In other words, methodological 

assumptions can vary as per different models. These methodological assumptions 

sometimes oversimplify the scenario. For instance, models using a bottom-up approach 

often make assumptions about macro parameters. However, these methodological 

assumptions are mostly made due to the absence of data. Thus, data scarcity and 

methodological assumptions are interrelated.  
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In any empirical model, there are always some assumptions made as it is not possible to get all the 
present, past, and future data for the parameters. For instance, in most of the cases, the scenario-
related assumptions are necessary to build the scenarios as parameter data under different scenario 
is not available. Thus, having assumptions should not be seen as a weakness. However, some of the 
assumptions, mostly structural and methodological assumptions may oversimplify the models, but 
due to data scarcity, there are no other options left than making an assumption. Hence, the nature 
of the assumptions should be examined thoroughly for any model. 
 
Next steps:  
This study provides an understanding of the current demand trends and on some of the key energy 
demand models of the building and transport sector. From the existing trends, it is clear that the 
role of energy models would be crucial to design and implement policies to limit global warming by 
1.5 degrees. Moreover, the energy demand models need to as transparent as possible. Thus, both 
models’ methodological framework and their assumptions with coding should be openly available.  
There are some major challenges regarding the data availability which are discussed in this study. 
These data challenges need to be identified before running a model and accordingly, models need 
to be designed/ modified. In case of other methodological challenges such as incorporating lock-in 
effects, integrating renewable energy sources, should get incorporated into the model as much as 
possible. Moreover, quantification of the variability of energy demand as per time and location is 
necessary to understand the practicability of energy transition. Accordingly, quantification of the 
shape and variability of weather dependent renewable energy sources would be conducted to 
understand the feasibility of the renewable energy sources to meet energy demand. This report 
provides a list of issues that needs to be tackled by identifying and discussing the issues-related to 
energy models. As the next step, the SENTINEL project would do the following: 

• Try to upgrade/modify the demand models such as DESTINEE, HEB, BEVPO, and DREEM as 
much as possible. This upgradation/modification would further help the models to represent 
the demand component more precisely.  

• The output of the models will be linked to the user-needs identified in deliverable 1.2. This 
linking would be a gap analysis as well which would further improve the models.  

• Including economic and transition data as input to the demand models in collaboration with 
WP 2 and WP 5. This incorporation of data would emphasis the role of demand in the energy 
transition.  

• Lastly, this input from demand then can further be incorporated into the system model in 
order to provide a precise picture of the energy system transition. Moreover, different case 
studies will be conducted using this model. This will entail calibrating the model data to the 
details of the case study region. 
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